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Abstract 

 
This investigation presents a data-driven Long-short Term Memory (LSTM) battery model for predicting State of 

Charge (SOC) for a lithium-ion battery (LiFePO4) during Electric Vehicle (EV) operation. The LSTM builds and 

updates a model using multivariate inputs that include physical properties, voltage, current, and temperature during 

operation. The goal of training is to accurately predict future SOC from multiple training examples using an online 

learning scheme.  Initial results demonstrate excellent prediction with a Root Mean Square Error (RMSE) ranging 

from 0.372 < 𝑅𝑀𝑆𝐸 < 0.534 which outperforms results from literature that utilized other neural network 

algorithms.  
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1.  Introduction 
With an increase in devices and applications that require batteries, management has become critical to maintaining 

the safety and reliability of batteries. In the case of Electric Vehicle (EV) operations, a Battery Management System 

(BMS) controls many parameters.  State of Charge (SOC) is widely considered the most influential and important of 

these parameters and is responsible for safe vehicle operation [1].  SOC is very influential by providing information 

about the battery’s current and remaining life, which is useful for protecting the battery from over-charging/over-

discharging. Furthermore, an accurate estimation of the battery state assures reliable and optimal operating 

conditions for the user. In the case of EV operation, SOC is the equivalent of a fuel gauge and indicates to the user 

how much energy is available for usage. However important SOC is, it remains one of the main challenges in the 

successful operation of EVs [1].  SOC estimation methods are typically sophisticated, with scarce literature found to 

provide a detailed explanation of the many methods.  Most of the methods have significant issues that become more 

apparent by the aging of the battery, temperature fluctuation, and change in discharge cycles [1].  Also, many of the 

methods produce inaccurate estimations of SOC because of the high sensitivity that lithium-ion batteries have to 

internal/external factors and complex electrochemical reactions [1].  This results in a model attempting to evaluate 

complex calculations with high computation cost, with negligence on the effects of time.  

 

A robust number of Machine Learning (ML) algorithms, mainly comprised of Neural Network (NN) architectures, 

have been utilized in an attempt to accurately predict SOC due to the ability to adapt and self-learn on a complex 

nonlinear dataset. He et al. developed one such architecture., using a Back Propagation Neural Network (BPNN) 

along with an Unscented Kalman Filter (UKF) to estimate SOC during different driving conditions [2]. We present 

and investigation that introduces a novel approach to battery modeling by using a Recurrent Neural Network 

architecture that treats the battery performance data as a time-series. 
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2.  Methods 
 

2.1 Multi-Step Multivariate Time Series Forecasting 

The input to the temporal sequence contains multiple parameters (P) with N observations {𝑋𝑃1
, 𝑋𝑃2

, 𝑋𝑃3
, … , 𝑋𝑃𝑁

} with 

each data point being comprised of a real-valued vector. The target, or output, data points are tasked with predicting 

multi-step observations {𝑦̂𝑃𝑁+1
, 𝑦̂𝑃𝑁+2

, 𝑦̂𝑃𝑁+3
, … , 𝑦̂𝑃𝑁+𝐻

} where; H is referred to as the forecasting horizon. For this 

investigation, eight input variables have been used; Current (A), Voltage (V), Charge Capacity (Ah), Charge Energy 

(W), Discharge Energy (Wh), dV/dt (V/s), and Temperature (C), along with the output of SOC.  

 

2.2 Estimating State of Charge 

When a battery is being discharged, this percentage can be expressed in the following formula with 𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑎𝑏𝑙𝑒  as the 

current capacity of the system and 𝑄𝑟𝑎𝑡𝑒𝑑  as the nominal capacity of the system: 

 

                                                  𝑆𝑂𝐶 =
𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑏𝑎𝑙𝑒

𝑄𝑟𝑎𝑡𝑒𝑑
× 100%                                       (1) 

 

Since batteries are comprised of chemical energy and current literature does not demonstrate any method to measure 

SOC directly and precisely, estimations can be broken down into four categories: 1) Direct measurement methods 

which measure physical properties of the battery (i.e. voltage) and estimate SOC based on linear and nonlinear 

relationships. 2) Book-keeping estimation that call indirect methods that utilize discharging current as the input and 

integrate throughout time to calculate SOC. 3) Adaptive systems that are self-designing and automatically adjust the 

SOC when subjected under various discharging conditions. 4) Hybrid methods that employ the advantageous parts of 

each SOC estimation method to provide global optimized or ensemble estimation method.  

 

Typically, machine learning algorithms fall within the adaptive systems category.   When a neural network is used for 

SOC prediction the model typically takes discharge current, terminal voltage and temperature as inputs and SOC as 

the output to build the structure of the NN for LiFePO4 batteries [1].  Researchers have demonstrated that NN models 

have the ability of functioning in non-linear environments during battery charge/discharge conditions [1].   

 

2.3 LSTM-RNN Architecture for SOC Prediction 

Recurrent Neural Networks (RNN) 

The effectiveness of a NN assumes independence of data in a training and test set [3].  Typical NN architecture for 

estimating SOC in literature usually include three layers; input, output, and hidden.  The majority of models assume 

input nodes of discharge current, terminal voltage, and ambient temperature with an output of SOC to construct the 

model for LiFePO4 [1]. Many of these models lack consideration of time and online features which limit their accuracy 

through the life of the battery.  In an EV application, data is time-variant, that is to say that battery performance will 

degrade through time. Therefore, the independence assumption fails due to the data being highly affected by other 

data within the dataset. As a result, the learning performance of a NN will degrade through time and the capability of 

the predictive model will become unreliable.  In the particular situation of EV operation, a data point can be highly 

affected by a previous data point so it becomes vital for the NN to concern itself with these dependencies.  Recurrent 

Neural Networks (RNN) have been used extensively for applications with time-series and sequential datasets. RNN 

models are different than feedforward architectures [2].  

 

Long-Short Term Memory (LSTM)  

In practice, the LSTM has demonstrated a superior ability to learn long-range dependencies as compared to simplified 

RNNs [3]. This model was introduced in an attempt to overcome the vanishing gradients problem.  While LSTM is a 

type of RNN, this model introduces a memory cell.  RNNs utilize long-term memory in the form of weights which 

change slowly during training and short-term memory in the form of ephemeral activations which pass from one node 

to another [3]. The memory cell in a LSTM network has an intermediate type of storage in the form of gates within 

each hidden layer. A typical LSTM architecture contains four parts within the memory block: an input gate (i), a forget 

gate (f), and output gate (o), and cell state (𝐶𝑡−1). The forget gate is responsible to deciding which information is 

retained or discarded from the cell state. The input gate determines which values will be updated to a vector of new 

candidate values 𝐶𝑡̃. Finally, the output gate decides what information will be passed to the cell state in the next time 

step.  

 



Hespeler, Fuqua 

 

2.4 Research Focus 

Based on literature, we identified specific research lines of effort 1) RNN architectures (specifically LSTM 

architectures) utilized for battery modeling is scarce.  Literature states that battery modeling should account for battery 

history especially in HEV applications. 2) Battery modeling of internal dynamics is complex and requires reaching 3+ 

hours of steady state (in some cases) to identify an initial accurate SOC which is not ideal for HEV applications. 3) 

Influential parameters that highly effect battery performance are typically assumed without any feature analysis 

methods to backup assumptions. 4) Many of the accepted SOC prediction models are hybrid methods which require 

multiple mathematical models working in alignment with one another to achieve a reasonable prediction accuracy.  

 

Therefore, an online battery model that relates physical battery properties (terminal voltage, current, temperature, 

historical usage) to SOC and includes operating limits is desired for design of a BMS with the main function of 

controlling charge/discharge of the battery and provides information to the user about future SOC estimations is the 

focus of this investigation. 

 

Three research topics have been evaluated to occupy the research gaps. Research topic number 1 is Feature 

Engineering for determination of highly influential parameters affecting battery performance.  Research topic number 

2 is grid search for model tuning using high performance computing (HPC) resources.  Research topic 3 is concerned 

with the nature of a time variant big dataset utilized for SOC prediction.  The hypothesis is that during HEV application 

an LSTM architecture will minimize error on big data SOC prediction based on sequential data due to use of long 

term and short-term temporal correlations. 

 

2.5 Model Parameters 

Three input neurons were used based on physical variables (current, voltage, and temperature) collected from the 

battery experiment.  50 neurons make up the first hidden layer with 1 neuron in the output layer (SOC). The LSTM 

moves through 1-time step and contains 4 features.  We performed training on 50, 100, 150, and 300 epochs with 

results reported in Section 4.2.  The model evaluates Mean Absolute Error for the loss function, utilizes Adam 

optimization, and has a lag (window width) of 3.  The training and test loss and Root Mean Square error (RMSE) are 

reported in section 4.2.  

3.  Experimental 

3.1 Data Collection 

The data was collected from a lab environment and reported in He el al. [2].  The battery tested was a LiFePO4 and 

was subjected to three battery testing load profiles; dynamical stress testing (DST), US06 highway driving schedule, 

and federal urban driving schedule (FUDS).  DST data was used as training due to the dataset being less complex 

than the other two data profiles.  US06 and FUDS were used as testing because the data is complex (and highly 

nonlinear) and simulates real life driving conditions. 

 

The authors used an algorithmic approach consisting of four steps.  The first step initialized 𝑘 = 1, 𝑛 = 1, where 𝑘 

is a parameter used to determine the dimension of the input vector, and 𝑛 is the number of neurons in the hidden 

layers. Next, the following features were trained; Current, Voltage, and Temperature as inputs and SOC as the 

output.  Next, the root mean square error (RMSE) was calculated between the estimation output and the actual SOC.   

Finally, if the RMSE <1%, the searing is completed; else if 𝑘 < 2𝑛, 𝑘 = 𝑘 + 1 and return to step two; else 𝑛 = 𝑛 +
1, 𝑘 = 𝑛 and return to step two.  

 

3.2 Data Formatting  

The experimentation from He et al. resulted in the collection of a very large multivariate dataset.  For this 

investigation, we prepared, cleaned, and organized the dataset to allow for quality results.  We eliminated empty 

rows and kept columns containing current, voltage, temperature, and SOC values.  The results later discussed in this 

article pertain only to a small fraction of the entire dataset.  One test run from each load profile was selected for 

evaluation in the LSTM model (DST, US06, FUDS).  

 

Once cleaning was complete, the time series data was transformed into a supervised learning format. Using a lag of 

3, this altered the data from {𝑣𝑎𝑟1, 𝑣𝑎𝑟2, … 𝑣𝑎𝑟𝑃} to 

{𝑣𝑎𝑟1(𝑡−3), 𝑣𝑎𝑟1(𝑡−2), 𝑣𝑎𝑟1(𝑡−1), 𝑣𝑎𝑟1(𝑡), 𝑣𝑎𝑟1(𝑡+1), 𝑣𝑎𝑟1(𝑡+2), 𝑣𝑎𝑟1(𝑡+3), … , 
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𝑣𝑎𝑟𝑃(𝑡−3), 𝑣𝑎𝑟𝑃(𝑡−2), 𝑣𝑎𝑟𝑃, 𝑣𝑎𝑟𝑃(𝑡), 𝑣𝑎𝑟𝑃(𝑡+1), 𝑣𝑎𝑟𝑃(𝑡+2), 𝑣𝑎𝑟𝑃(𝑡+3)}. Finally, the data was normalized to a value 

from 0 to 1. 

4.  Results and Discussion 

4.1 Feature Analysis  

A main aspect of this investigation was to determine the effects of physical battery parameters on battery operation. 

Table 1 reports the importance values for the physical properties collected during experimentation.  We see that 

current and voltage are the most influential parameters during battery operation, which was expected.  The 

remaining parameters have negligent influence on how the battery performs.  

 

Correlation analysis was performed on the DST dataset and results are reported in Figure 1. Only one sample was 

selected to feed the LSTM however, for comparison purposes three samples were arbitrarily selected.  Looking at 

the correlation plots (shown in Figure 1), we can observe that voltage and temperature are not correlated with SOC.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 LSTM Results 

We set the lag for the LSTM to 3 with a variety of epochs executed. Table 2 shows the result of RMSE by four 

different epochs (50, 100, 150 and 300) and compares the RMSE among the different data sets. The highest RMSE 

  

  

 

Figure 1: Correlation plots of (a) Current and SOC (b) 

Voltage and SOC (c) Temperature and SOC (d) 

Correlation among all parameters used for the LSTM 

input layer and (e) Autocorrelation of the current feature 

over time in the DST dataset 

Table 1: Feature Analysis using Random 

Forest Techniques 

Table 2: RMSE Results 

(a) (b) 

(c) (d) 

(e) 
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was recorded on the most complex dataset with the least number of epochs, while the lowest RMSE was recorded on 

the simplest dataset with epochs ≥ 150.  The best recorded RMSE, 0.372, was observed in the DST dataset while 

running 150 epochs.  It’s interesting to see that RMSE becomes steady between 150 and 300 epochs as the RMSE 

only changes 0.001.  This result suggests that additional epochs are not needed for simple time series datasets for 

battery operation. The highest RMSE, 0.534, was recorded with the FUDS dataset with 50 epochs.  

 

From the He et al. results, their NN algorithm RMSE was 1.5 to 4.1 RMSE for the US06 database and 1.7 to 4.2 for 

the FUDS database.   For the NN+UKF algorithm, the RMSE for the US06 was 0.9 to 2.5 and 0.5 to 2.2 for the FUDS.  

It is important to note that the authors report results of the NN with and without a UKF.  UKF was added to smooth 

the higher error % from the NN battery model.  The LSTM in this investigation outperforms the measured performance 

from the NN+UKF without needing a filter (see Table 2).  

 

The loss of the train and test sets can be observed in Figure 2.  Results for 50 epochs (left column) are reported for the 

DST (top), US06 (middle), and FUDS (bottom) datasets and compared to results for 300 epochs (right column).  

 

  

  

  
Figure 2: Loss for train vs test sets for (a) 50 epochs with DST dataset (b) 300 epochs with DST dataset (c) 50 epochs 

with US06 dataset (d) 300 epochs with US06 dataset (e) 50 epochs with FUDS dataset and (f) 300 epochs with FUDS 

dataset 

The experimental data points are compared to the predicted data points in Figure 3, confirming the reported RMSE 

results.  It is clear that the predicted values mirror the actual values.  Figure 3 shows the plots for actual and 

predicted values for 50 epochs (left column) and 300 epochs (right column) for each load profile dataset; DST (top), 

US06 (middle) and FUDS (bottom).  

 

(b) 

(c) (d) 

(e) (f) 

(a) 
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Figure 3: Actual vs Predicted values for (a) 50 epochs with DST dataset (b) 300 epochs with DST dataset (c) 50 

epochs with US06 dataset (d) 300 epochs with US06 dataset (e) 50 epochs with FUDS dataset and (f) 300 epochs with 

FUDS dataset 

5.  Conclusion 
This investigation was focused on creation and implementation of a Recurrent Neural Network using temporal 

multivariate data and ambient temperature features.  Several objectives remain for this investigation. Most 

importantly is the implementation of High-Performance Computing (HPC).  The dataset is large and evaluating the 

entire dataset will require the use of HPC.  A grid search will be performed and hyperparameters will be tuned for 

the model. These hyperparameters will be used to optimize the LSTM model. 
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